只有有符号的整数才有原码、反码和补码的!其他的类型一概没有。虽然我们也可以用二进制中最小的数去对应最小的负数,最大的也相对应,但是那样不科学,下面来说说科学的方法。1个字节它不管怎么样还是只能表示256个数,因为有符号所以我们就把它表示成范围:-128-127。它在计算机中是怎么储存的呢?可以这样理解,用最高位表示符号位,如果是0表示正数,如果是1表示负数,剩下的7位用来储存数的绝对值的话,能表示27个数的绝对值,再考虑正负两种情况,27*2还是256个数。首先定义0在计算机中储存为00000000,对于正数我们依然可以像无符号数那样换算,从00000001到01111111依次表示1到127。那么这些数对应的二进制码就是这些数的原码。到这里很多人就会想,那负数是不是从10000001到11111111依次表示-1到-127,那你发现没有,如果这样的话那么一共就只有255个数了,因为10000000的情况没有考虑在内。实际上,10000000在计算机中表示最小的负整数,就是这里的-128,而且实际上并不是从10000001到11111111依次表示-1到-127,而是刚好相反的,从10000001到11111111依次表示-127到-1。负整数在计算机中是以补码形式储存的,补码是怎么样表示的呢,这里还要引入另一个概念——反码,所谓反码就是把负数的原码除符号位(负数的原码除符号位和它的绝对值所对应的原码相同,简单的说就是绝对值相同的数原码相同)各个位按位取反,是1就换成0,是0就换成1,如-1的原码是0000001(注意这里只有7位,不看符号位,我这里所说的负数符号位都是1),和1的原码相同,那么-1的反码就是1111110(这也是7位,后面加上了符号位都是8位了),而补码就是在反码的基础上加1,即-1的补码是11111110+1=11111111,因此我们可以算出-1在计算机中是按11111111储存的。总结一下,计算机储存有符号的整数时,是用该整数的补码进行储存的,0的原码、补码都是0,正数的原码、补码可以特殊理解为相同,负数的补码是它的反码加1。 (责任编辑:admin) |